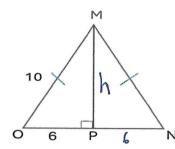
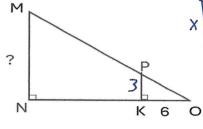
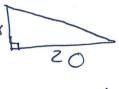

Triangles. Form A


- 1. Given right triangle ΔMNO below, how many units long is \overline{NO} ?
- (A) $2\sqrt{2}$
- (B)4
- (C)6
- (D) $\sqrt{60}$
- (E) 8

- 1 This is a 10-6-8 or 5-2-4 A
 - @ You could use Pythagorean
- 2. For triangle ΔMNO below, \overline{MN} is congruent to \overline{MO} . If $\overline{MO}=10$ units, and $\overline{PO}=6$ units. What is the area of the triangle ΔMNO in square units? y Isosceles Triangle so

- (D) 30
- (E) 120

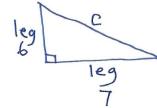

h=8 -> same explanation as above.


$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2}(6+6)8 = \frac{1}{2}(32)(8)$$

$$= 48$$

- 3. In the right triangle ΔMON below, \overline{PK} is parallel to \overline{MN} , and \overline{PK} is perpendicular to \overline{NO} at K. The length of \overline{NO} is 20 feet, the length of \overline{PK} is 3 feet, and the length of \overline{OK} is 4 feet. What Similar Triangles is the length, in feet, of \overline{MN} ?
- (A) 10 (B) 12
 - (C) 15
 - (D) 16
 - (E) 17



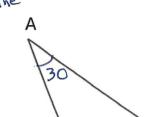
$$\frac{x}{3} = \frac{20}{6}$$

$$x = \frac{(20)(3)}{6} = 10$$

- 4. What is the perimeter, in feet, of a right triangle with legs that are 6 feet long and 7 feet long, respectively?
- (A) $\sqrt{13}$
- (B) 21
- (C) $\sqrt{85} + 13$

$$C = 6 + 7$$
 $C = 36 + 49 = 85$
 $C = \sqrt{85}$

(D) √85


(A) 150° (B) 140°) (C) 130° (D) 120°

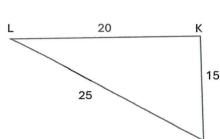
(E) 110°

(E) $\sqrt{85} + \sqrt{13}$

5. In the figure below, $\angle BAC$ measures 30°, angle $\angle ABC$ measures 110°, and points B, C,

and D are collinear. What is the measure of $\angle ACD$? on some straight line

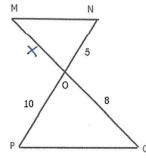
Using external Angle Thm: <ACD = SUM of two opposite internal angles <ACD = 30+110=140


110 B

> You could also solve by 30+110+x=180 X = 180 - 140 = 40

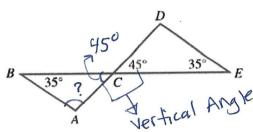
6. In the figure below, where $\Delta ABC \sim \Delta KLM$, lengths given are in centimeters. What is the perimeter, in centimeters, of AABC? Similar Triangles

- $\frac{x}{20} = \frac{3}{15}$



- (D) 60 (E) $71\frac{3}{4}$
- $X = \frac{(3)(20)}{15} = 4$ 50 AABC is a 345 Triansle

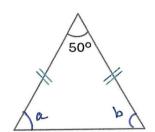
7. In the figure below, $\overline{MN} \parallel \overline{PQ}$ and segment PN intersects segment MQ at O. What is the length of segment MQ? Paralki


MNO and OPQ are similar triangles

- (A) 4
- (B) 24
- (C) 12
 - (D) 49
 - (E) $15\sqrt{7}$

$$X = \frac{8}{2} = 4$$

- 8. In the figure below, C is the intersection of \overline{AD} and \overline{BE} . If it can be determined, what is the measure of $\angle BAC$?
- (A) 80°
- (B) 100°
 - (C) 110°
 - (D) 45°
 - (E) 90°


45° 35° E equal Vertical Angles are equal 35+45+?=180

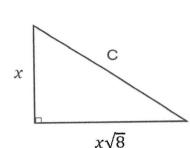
$$35+45+?=180$$

 $?=180-80=100$

9. The isosceles triangle below has one angle measure as shown. What is the measure of

each of the other angles?

- (A) 30°
- (B) 45°
- (C) 50°
- (D) 65°
 - (E) 130°


> means opposite ansles a and b are equal

$$50 + a + b = 180$$

 $0.4b = 180 - 50$
 $0.4b = 130$
 $0.4b = 130$
 $0.4b = 130$
 $0.4b = 130$

10. In the figure below, what is an expression for C in terms of x?

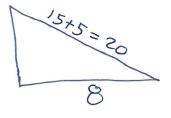
(A)
$$x^2 + \sqrt{8}$$

- (B) x + 8
- (C) 3x
 - (D) 8
 - (E) $3x + \sqrt{8}$

terms of x?

$$C = x + (x \sqrt{8})^{2}$$

$$C = x + x^{2}(\sqrt{8})^{2}$$

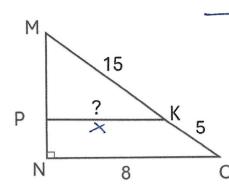

$$C = x + 8x^{2}$$

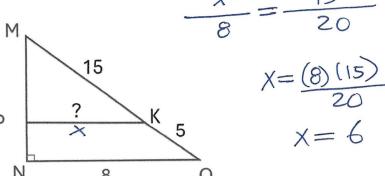
$$C = 9x^{2}$$

$$C = \sqrt{9x^{2}} = 3x$$

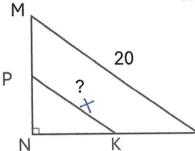
11. In the right triangle ΔMON below, \overline{PK} is parallel to \overline{NO} , and \overline{PK} is perpendicular to \overline{MN} at P. The length of \overline{MK} is 15 feet, the length of \overline{KO} is 5 feet, and the length of \overline{NO} is 8 feet. What is the length, in feet, of \overline{PK} ?

Triangles MON and MKP are similar



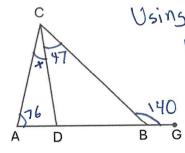


- (B) 8
- (C) 125
- (D) $\sqrt{8}$
- (E) $5\sqrt{8}$


12. In the right triangle ΔMON below, \overline{PK} is parallel to , and $\overline{NK}\cong\overline{KO}$. The length of \overline{NK} is 8 feet, the length of \overline{NO} is 16 feet, and the length of \overline{MO} is 20 feet. What is the length, in feet, of \overline{PK} ?

(D) $\sqrt{8}$ (E) $5\sqrt{8}$

$$\frac{x}{20} = \frac{8}{16}$$


$$X = \frac{(20)(8)}{16}$$

$$X = 10$$

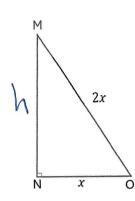
13. In the figure below, A, D, B, and G are collinear. If $\angle CAD$ measures 76°, $\angle BCD$ measures 47°, and $\angle CBG$ measures 140°, what is the degree measure of $\angle ACD$?

external Angle

$$X = 140 - 47 - 76$$

$$x = 17$$

14. The area of the right triangle ΔMON is:


$$(A) \frac{\sqrt{3}}{2} x^2$$
(B) x^2

(B)
$$x^2$$

(C)
$$\frac{\sqrt{5}}{2}x^2$$

(D)
$$\sqrt{2x}$$

(E)
$$\frac{3}{2}x^2$$

Find the height h

$$(2x) = h^2 + x^2$$

$$4x = h^2 + x^2$$

$$h^2 = 4x^2 - x^2 = 3x^2$$

$$h = \sqrt{3}x^2 = \sqrt{3}x$$

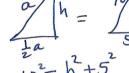
$$A = \frac{1}{2} base. height = \frac{1}{2} \times (\sqrt{3} \times) = \frac{1}{2} \sqrt{5} \times^2$$

15. In the figure below, equilateral triangle ΔMNP has a side length of 10 inches. What's the For Triangle area of the circle centered at O in inches square?

(B)
$$\frac{\sqrt{75}}{\pi}$$

$$(C)\frac{75}{4}\pi$$

$$(D) 25\pi$$



for area of OM(Q is the diameter which is the height O(B) $\frac{\sqrt{75}}{4}\pi$ of triangle O(C) $\frac{75}{4}\pi$ So Diameter = O(D) O(D) O(D) O(E)

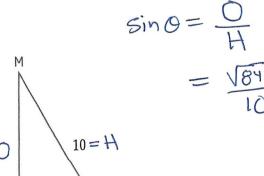
SO Diameter =
$$\sqrt{75}$$

(E)
$$\sqrt{\frac{75}{4}}\pi$$

(E)
$$\sqrt{\frac{75}{4}}\pi$$
 A inche $\sqrt{75}$

$$h^2 = 100 - 25 = 75$$

16. In the right triangle below, MO = 10 units, and NO = 4 units. What is the sine of $\angle MON$?


$$(A)\frac{\sqrt{84}}{10}$$

(B)
$$\frac{2}{5}$$

(C)
$$\sqrt{84}$$

(D)
$$\frac{\sqrt{84}}{4}$$

$$(\mathsf{E})\,\sqrt{\frac{21}{5}}$$

$$= \frac{\sqrt{8}}{10}$$

$$= \sqrt{8}$$

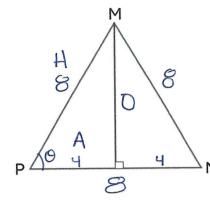
$$10 = H$$

$$0$$

$$0$$

$$10^{2} = 4^{2} + 0^{2}$$

$$0^{2} = 100 - 16 = 84$$


$$0 = \sqrt{84}$$

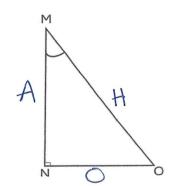
SOHCAHTOA

17. In the figure below, equilateral triangle ΔMNP has a side length of 8 inches. What's the all sides equal cosine of $\angle MPN$?

SOH CAH TOA

- (A) $\frac{\sqrt{48}}{8}$
- $\left(B\frac{\sqrt{48}}{4}\right)$
- (C) $\frac{\sqrt{2}}{3}$

$$\cos 0 = \frac{A}{H}$$

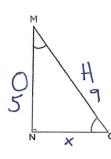

$$= \frac{4}{8} = \frac{1}{2}$$

8=4+0 No need to find this of the problem. Solved to show you the trap of where Vy8 is coming from

18. In the right triangle $\triangle MON$, the tangent of $\angle OMN$ is $\frac{3}{7}$. What is the length of segment SOHCAHTOA MN?

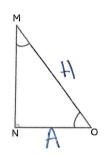
(A)3

- (B) $\sqrt{40}$
- (C) $\sqrt{21}$
- (D) 7
- (E) $\sqrt{\frac{40}{3}}$



 $\frac{3}{7} = \frac{9}{4}$ 50 $\frac{3}{4} = \frac{3}{7}$

19. In the right triangle ΔMON , the sine of $\angle O$ is $\frac{5}{9}$. What is the length of segment NO?

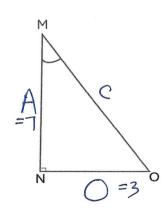

SOH CAH TOA

- (A)5
- (B) √56
- (C) √106
- (D)9
- (E)45

$$q^{2} = 5 + x^{2}$$

 $x^{2} = 81 - 25 = 56$
 $x = \sqrt{50}$

- (E) 45 $\chi^2 = 81 25 = 56$ $\chi = \sqrt{56}$ 20. In the right triangle ΔMON , the cosine of $\angle O$ is $\frac{3}{8}$. What is the length of segment NO?
- (A) 24
- (B) $\sqrt{73}$
- (C) √55
- (D) 8
- (E)3

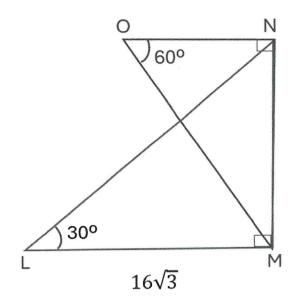

CAH

$$\frac{3}{8} = \frac{A}{H}$$

$$A = 3 = N0$$

$$H = 8$$

- 21. In the right triangle ΔMON , the tangent of $\angle M$ is $\frac{3}{7}$. What is the length of segment MO?
- (A)3
- (B) $\sqrt{40}$
- (C) √58
 - (D) 7
 - (E) 21


$$C^{2} = \frac{2}{3+7}$$

$$C^{2} = 9+49 = 58$$

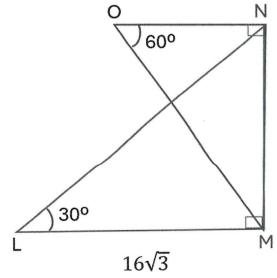
$$C = \sqrt{58}$$

TOA

22. For the triangles in the figure below, what is the length of segment MN?

	30°	60°
sinθ	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
cosθ	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
tan0/	$\left(\frac{\sqrt{3}}{3}\right)$	$\sqrt{3}$

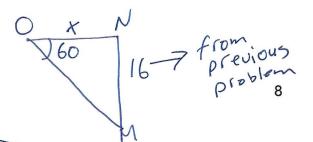
((A)	16
	(B)	$\sqrt{40}$

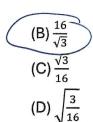

TOA

$$tan 30 = \frac{x}{16\sqrt{3}}$$

$$\frac{\sqrt{3}}{3} = \frac{\times}{16\sqrt{3}} \implies$$

$$\frac{\sqrt{3}}{3} = \frac{x}{16\sqrt{3}} \implies x = \frac{16\sqrt{3}}{3} = \frac{16\sqrt{9}}{3} = \frac{16\cdot 3}{3} = \frac{16}{3}$$

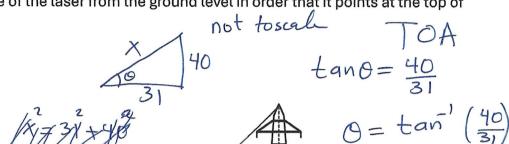

23. For the triangles in the figure below, what is the length of segment NO?



	30°	60°
sinθ	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
cosθ	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
tanθ	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$

$$tan 60 = \frac{16}{x}$$

$$\sqrt{3} = \frac{16}{x}$$



$$X\sqrt{3} = 16$$

$$X = \frac{16}{\sqrt{3}}$$

(E)
$$\sqrt{\frac{16}{3}}$$

24. A laser is placed at a distance of 31 meters from the base of a tower that is 40 meters tall. What is the angle of the laser from the ground level in order that it points at the top of the tower?

31 m

(A)
$$tan^{-1}(\frac{31}{40})$$

(B)
$$sin^{-1}(\frac{31}{40})$$

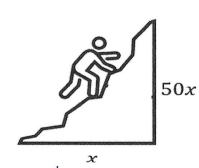
(C)
$$cos^{-1}(\frac{31}{40})$$

$$(D) tan^{-1}(\frac{40}{31})$$

(E)
$$tan(\frac{40}{31})$$

25. A hiker climbs a mountain that has a base of x units, and a height of 50x units. What is

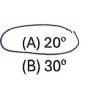
the approximate length of the mountain's incline if it's modeled as a straight line?

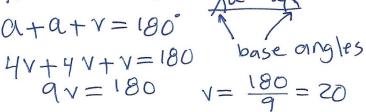


(B)
$$\sqrt{2504x}$$

(C)
$$\sqrt{51} x$$

(D)
$$\sqrt{2501} x$$


(E) $51x^2$


50x $C = x^{2} + (50x)^{2}$ $C = x^{2} + 2,500 \times 2$ $C^{2} = 250 | x^{2} | C = \sqrt{250} | x^{2}$

base angles are equal

26. In a given isosceles triangle, the measure of each of the base angles is four times the $\sqrt{250}$ X measure of the vertex angle. What is the measure, in degrees, of the vertex angle?

$$\alpha = 4v$$

For the triangle
 $\alpha + \alpha + v = 180^{\circ}$

9

vertex angle

- (C) 45°
- (D) 70°
- (E) 80°

Answers

- 1. E 11.A 21.C
- 2. B 12. A 22. A
- 3. A 13. C 23. B
- 4. C 14. A 24. D
- 5. B 15. C 25. A
- 6. B 16. A 26. A
- 7. C 17. E
- 8. B 18. D
- 9. D 19. B
- 10.C 20.E