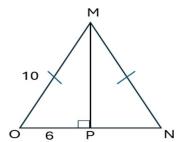
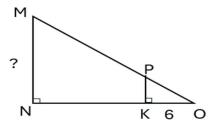

Triangles. Form A

1. Given right triangle ΔMNO below, how many units long is \overline{NO} ?


(A) $2\sqrt{2}$

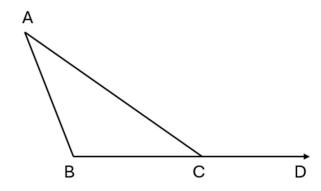
- (B) 4
- (C) 6
- (D) $\sqrt{60}$
- (E) 8


2. For triangle ΔMNO below, \overline{MN} is congruent to \overline{MO} . If $\overline{MO}=10$ units, and $\overline{PO}=6$ units. What is the area of the triangle ΔMNO in square units?

- (A) 24
- (B) 48
- (C) 60
- (D) 30
- (E) 120

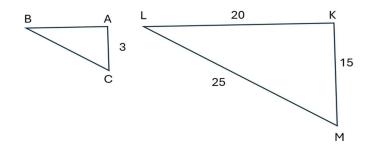
3. In the right triangle ΔMON below, \overline{PK} is parallel to \overline{MN} , and \overline{PK} is perpendicular to \overline{NO} at K. The length of \overline{NO} is 20 feet, the length of \overline{PK} is 3 feet, and the length of \overline{OK} is 4 feet. What is the length, in feet, of \overline{MN} ?

- (A) 10
- (B) 12
- (C) 15
- (D) 16
- (E) 17

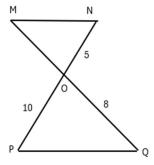


- 4. What is the perimeter, in feet, of a right triangle with legs that are 6 feet long and 7 feet long, respectively?
- (A) $\sqrt{13}$
- (B) 21
- (C) $\sqrt{85} + 13$

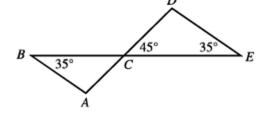
- (D) $\sqrt{85}$
- (E) $\sqrt{85} + \sqrt{13}$


5. In the figure below, $\angle BAC$ measures 30°, angle $\angle ABC$ measures 110°, and points B, C, and D are collinear. What is the measure of $\angle ACD$?

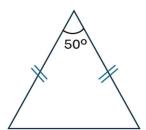
- (A) 150°
- (B) 140°
- (C) 130°
- (D) 120°
- (E) 110°


6. In the figure below, where $\Delta ABC \sim \Delta KLM$, lengths given are in centimeters. What is the perimeter, in centimeters, of ΔABC ?

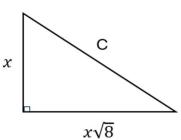
- (A) 14
- (B) 12
- (C) $21\frac{1}{2}$
- (D) 60
- (E) $71\frac{3}{4}$


7. In the figure below, $\overline{MN} \parallel \overline{PQ}$ and segment PN intersects segment MQ at O. What is the length of segment MQ?

- (A) 4
- (B) 24
- (C) 12
- (D) 49
- (E) $15\sqrt{7}$


8. In the figure below, C is the intersection of \overline{AD} and \overline{BE} . If it can be determined, what is the measure of $\angle BAC$?

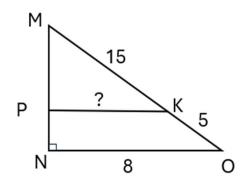
- (A) 80°
- (B) 100°
- (C) 110°
- (D) 45°
- $(E) 90^{\circ}$

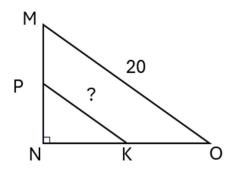

9. The isosceles triangle below has one angle measure as shown. What is the measure of each of the other angles?

- (A) 30°
- (B) 45°
- (C) 50°
- (D) 65°
- (E) 130°

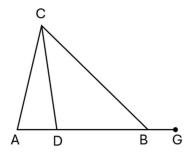
10. In the figure below, what is an expression for C in terms of x?

- (A) $x^2 + \sqrt{8}$
- (B) x + 8
- (C) 3x
- (D) 8
- (E) $3x + \sqrt{8}$


11. In the right triangle ΔMON below, \overline{PK} is parallel to \overline{NO} , and \overline{PK} is perpendicular to \overline{MN} at P. The length of \overline{MK} is 15 feet, the length of \overline{KO} is 5 feet, and the length of \overline{NO} is 8 feet. What is the length, in feet, of \overline{PK} ?


(D)
$$\sqrt{8}$$

(E)
$$5\sqrt{8}$$


12. In the right triangle ΔMON below, \overline{PK} is parallel to , and $\overline{NK}\cong\overline{KO}$. The length of \overline{NK} is 8 feet, the length of \overline{NO} is 16 feet, and the length of \overline{MO} is 20 feet. What is the length, in feet, of \overline{PK} ?

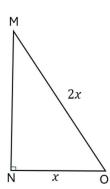
- (A) 10
- (B) 8
- (C) 125
- (D) $\sqrt{8}$
- (E) $5\sqrt{8}$



13. In the figure below, A, D, B, and G are collinear. If $\angle CAD$ measures 76°, $\angle BCD$ measures 47°, and $\angle CBG$ measures 140°, what is the degree measure of $\angle ACD$?

- (A) 12°
- (B) 14°
- (C) 17°
- (D) 36°
- (E) 43°

14. The area of the right triangle ΔMON is:



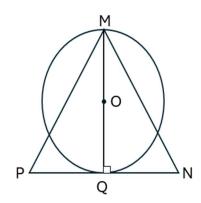
(B)
$$x^2$$

(C)
$$\frac{\sqrt{5}}{2}x^2$$

(D)
$$\sqrt{2x}$$

(E)
$$\frac{3}{2}x^2$$

15. In the figure below, equilateral triangle ΔMNP has a side length of 10 inches. What's the area of the circle centered at O in inches square?


(A)
$$\sqrt{75}\pi$$

(B)
$$\frac{\sqrt{75}}{4}\pi$$

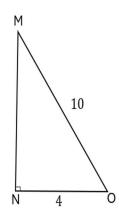
(C) $\frac{75}{4}\pi$

(C)
$$\frac{75}{4}\pi$$

(D)
$$25\pi$$

(E)
$$\sqrt{\frac{75}{4}}\pi$$

16. In the right triangle below, MO = 10 units, and NO = 4 units. What is the sine of $\angle MON$?


(A)
$$\frac{\sqrt{84}}{10}$$

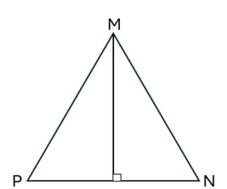
(B)
$$\frac{2}{5}$$

(C)
$$\sqrt{84}$$

(C)
$$\sqrt{84}$$
 (D) $\frac{\sqrt{84}}{4}$

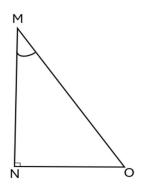
(E)
$$\sqrt{\frac{21}{5}}$$

17. In the figure below, equilateral triangle ΔMNP has a side length of 8 inches. What's the cosine of $\angle MPN$?

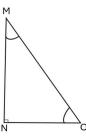


$$(B\frac{\sqrt{48}}{4}$$

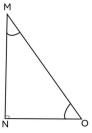
(C)
$$\frac{\sqrt{2}}{3}$$


(D)
$$\frac{4}{\sqrt{84}}$$

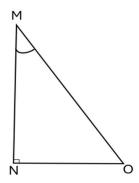
(E)
$$\frac{1}{2}$$


18. In the right triangle ΔMON , the tangent of $\angle OMN$ is $\frac{3}{7}$. What is the length of segment MN?

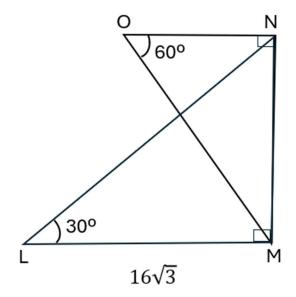
- (A) 3
- (B) $\sqrt{40}$
- (C) $\sqrt{21}$
- (D) 7
- (E) $\sqrt{\frac{40}{3}}$


19. In the right triangle ΔMON , the sine of $\angle O$ is $\frac{5}{9}$. What is the length of segment NO?

- (A) 5
- (B) $\sqrt{56}$
- (C) $\sqrt{106}$
- (D) 9
- (E) 45

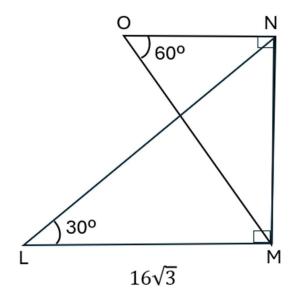

20. In the right triangle ΔMON , the cosine of $\angle O$ is $\frac{3}{8}$. What is the length of segment NO?

- (A) 24
- (B) $\sqrt{73}$
- (C) $\sqrt{55}$
- (D) 8
- (E) 3



21. In the right triangle ΔMON , the tangent of $\angle M$ is $\frac{3}{7}$. What is the length of segment MO?

- (A) 3
- (B) $\sqrt{40}$
- (C) $\sqrt{58}$
- (D) 7
- (E) 21


22. For the triangles in the figure below, what is the length of segment MN?

	30°	60°
sinθ	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
cosθ	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
tanθ	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$

- (A) 16
- (B) $\sqrt{40}$
- (C) $8\sqrt{3}$
- (D) 24
- (E) 8

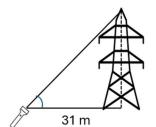
23. For the triangles in the figure below, what is the length of segment NO?

	30°	60°
sinθ	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
cosθ	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
tanθ	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$

(A) $\frac{1}{\sqrt{3}}$

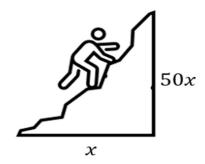
- (B) $\frac{16}{\sqrt{3}}$
- (C) $\frac{\sqrt{3}}{16}$
- (D) $\sqrt{\frac{3}{16}}$
- (E) $\sqrt{\frac{16}{3}}$

24. A laser is placed at a distance of 31 meters from the base of a tower that is 40 meters tall. What is the angle of the laser from the ground level in order that it points at the top of the tower?



(B)
$$sin^{-1}(\frac{31}{40})$$

(C)
$$cos^{-1}(\frac{31}{40})$$


(D)
$$tan^{-1}(\frac{40}{31})$$

(E)
$$tan(\frac{40}{31})$$

25. A hiker climbs a mountain that has a base of x units, and a height of 50x units. What is the approximate length of the mountain's incline if it's modeled as a straight line?

- (A) 2501x
- (B) $\sqrt{2504x}$
- (C) $\sqrt{51} x$
- (D) $\sqrt{2501} x$
- (E) $51x^2$

26. In a given isosceles triangle, the measure of each of the base angles is four times the measure of the vertex angle. What is the measure, in degrees, of the vertex angle?

- (A) 20°
- (B) 30°

- (C) 45°
- (D) 70°
- (E) 80°

Answers

- 1. E 11. A 21. C
- 2. B 12. A 22. A
- 3. A 13. C 23. B
- 4. C 14. A 24. D
- 5. B 15. C 25. D
- 6. B 16. A 26. A
- 7. C 17. E
- 8. B 18. D
- 9. D 19. B
- 10. C 20. E